Process dependability

Barbara Pernici
Politecnico di Milano
goals:
reliability, availability, repairability, minimize impact of errors
The ingredients

User

Processes

Infrastructure
A user perspective

User class uc₁

User class uc₂

Services

Databases

Db₁

Db₂

Db₃

Db₄

Service₁

Service₂

Service₃

Service₄

Service₅

Also the infrastructure matters

- In redundant contexts where data are replicated there is the probability that a user accesses out-of-date data

...we investigate the...

• Relationship between data and service quality and dependability

• Design of adaptive service compositions
Processes and services

Request

WS1

WS2

WS3

WS4

WS5

Messages

a_i

a_{i+1}

a_{i+2}

a_{i+3}

a_{i+4}

Exchanged Data

Boston, ICIQ '08
Self-healing web service

- Self-healing web services
 - Diagnosis
 - Repair actions
- Adaptive design
 - Self-healability = diagnosability + repairability

 Failure chain

- fault
- error
- failure

cause
state
alarms, observables, events, symptoms, faulty behaviors, discrepancies, exceptions and WS fault messages (notification)
Failures and data quality

- Databases misalignment
- Wrong item
- Wrong code
- Data unavailability
- Data incompleteness
- Missing code
- Service Failure

Boston, ICIQ '08
Dependability in composed services

• Depends on
 – the structure of the process
 – the ability to react to possible errors
 – available infrastructure
 – is strictly related to Quality of Service
The structure of the process

• Basic structure
• Patterns for increasing dependability
 – Redundancy (e.g. branches – N-out-of-M joins)
 – Dynamic service selection and substitution
the ability to react to errors

Actions
• Data quality blocks
• Exception handling
• Retry
• Redo
• Substitution
infrastructure

• Monitoring and detection
• Dynamic service management
• Self-healing
Process design Overview

Business Context Analysis

- Description of the business process
- Business Goals

Process Analysis

- Candidate processes, actors and roles

Process Analysis & Logical Design

- Design time actions
 - Insertion of monitors
 - Exceptions

- Run time actions
 - Service Redundancy
 - QoS constraints
 - Substitution of failed service
 - Architectural reconfiguration
 - Diagnosability
 - Retry the invocation of a failed service
 - Compensation

Pre-defined Mgmt mechanisms

Run time Mgmt actions

Instance level

Class level
Quality of service

• Relationships between quality dimensions

• Relationship between quality dimensions and design choices and adaptation actions

• Quality of Service and dependability

Each process and thus the services that compose it can be evaluated along the following quality dimensions:

- Accuracy
- Completeness
- Timeliness

- Availability
- Execution cost
- Failure risk

- Reputation
- Fidelity
Design Time

- Process Analysis
- Dependability Improvement Strategies Analysis

 - Ranking of the Dependability Improvement strategies

 - Selection of the final set of strategies

RunTime

- Process Monitor
- Reputation Assessment Module
- Dependability Rule Manager

1. Service 1
2. Service 2
3. Service 3

- Registry

- Selection of the final set of strategies
• Focus: link dependability and quality of service

C. Cappiello, B. Pernici, QUADS: Quality-Aware Design of dependable Service-based processes, on going work
Relating improvement actions and qualities

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Completeness</th>
<th>Availability</th>
<th>Timeliness</th>
<th>Execution Time</th>
<th>Reputation</th>
<th>Fidelity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Blocks</td>
<td>+</td>
<td>+</td>
<td>SD</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>=</td>
</tr>
<tr>
<td>Exception Handlers</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>=</td>
</tr>
<tr>
<td>Service Redundancy</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td>=</td>
</tr>
<tr>
<td>QoS Renegotiation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td>=</td>
</tr>
<tr>
<td>Redo/retry service invocation</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>=</td>
</tr>
<tr>
<td>Service substitution</td>
<td>SD</td>
<td>SD</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>SD</td>
<td>-</td>
</tr>
<tr>
<td>Architectural Reconfiguration</td>
<td>=</td>
<td>=</td>
<td>+</td>
<td>=</td>
<td>-</td>
<td>+</td>
<td>=</td>
</tr>
</tbody>
</table>

C. Cappiello, B. Pernici, QUADS: Quality-Aware Design of dependable Service-based processes, on going work
ECO metrics

• Focus on metrics for assessing power, energy consumption of applications and environmental impact

• EU project: ECO_{2}Clouds

• Issues related to dependability:
 – Power/Energy consumption capping
 – Power failures

Plans and on-going work

– Supports the process designer in the selection of suitable dependability improvement actions

– Extend the analysis to dependability of information systems in general
 • Classifying faults and failures
 • Energy-related problems
 • Deployment and management of applications on clouds
Some relevant papers...

• QUESTIONS?