THE GÉANT PROJECT COCO
Development of an SDN-based Virtual Private Network Service

Piotr Zuraniewski (TNO), Ronald van der Pol (SURFnet), Bart Gijsen (TNO), Marijke Kaat (SURFnet)
COCO PROJECT OVERVIEW

› CoCo: Community Connection
› Goal: empower eScience community with easy VPN service
› Partners:
 › SURFnet: Dutch National Research and Education Network (NREN)
 › TNO: Netherlands Organization for Applied Scientific Research
› Sponsor: GÉANT – pan-European research and education network interconnecting Europe’s NRENs
› Sponsorship via GN3plus Open Call programme
› Duration: Oct’13 – Mar’15
Virtual Private Networks (VPNs) are around for ~20 years

Number of technologies exist to assure private connectivity
 - MPLS, Q-in-Q, PBB,... + encryption

It is enough to buy a specialized device (e.g. Cisco ASA)...

...and call network administrator to configure it

When site needs to be added...
 - ...call network administrator to configure it
 - When site needs to be removed...
 - ...call network administrator to configure it
 - When end-point needs to be migrated...
NOW VPNs REQUIRE MANUAL CONFIG – UNSUITABLE FOR END USERS

- Currently, VPN configuration and maintenance requires network engineering knowledge and hands-on experience
- This is not a desired situation for end users
 - eScience community members may be experts in e.g., physics or biology
 - ...but not so much in network engineering
- Workshop with eScience community in Q1 2015 to learn about specific needs
 - eScience community members want to share facilities like:
 - scientific instruments
 - data processing
 - storage
 - ...without need for assistance by network administrator
 - ...at the affordable cost
COCO USE CASE: DNA SEQUENCER AS A SERVICE

- Workshop conclusion: eScience community interested in CoCo-like service
- Refined use case: DNA sequencer as a Service (BigData!) with Wageningen University
- Key objective: increase accessibility of multiple sequencers at different locations
- Better utilization needed for acceptable return of investments
COCO: USER INITIATED, EASY TO USE, ON-DEMAND CONNECTIVITY SERVICE

User controlled provisioning of VPNs on OpenFlow switches using OpenDaylight.

Image from http://www.geego.com/
SDN AS FRAMEWORK TO REALIZE COCO

- Software Defined Networking framework allows for lots of freedom in creating and managing networks
- Application signals requirements to controller
 - „connectivity from site A to site B needed”
- Controller parses app requirements, translates it to form understandable by switches and sends appropriate commands
 - „Switch1: match in_port=1, action out_port=5”
- Switches install flows in their forwarding tables and move traffic
- No specialized hardware needed
COCO LAYERED ARCHITECTURE – ULTIMATE GOAL

- Web portal as user front-end
- REST API for web portal to controller communication (northbound interface)
- BGP for communication between controllers in different domains
- OpenFlow for controller to switches communication (southbound interface)
SOME ARCHITECTURE DETAILS: LAYER3 VPN, MPLS FORWARDING

- We have decided to make the following choices regarding architecture details
- Layer3 (not Layer2) service
- Double MPLS tagging:
 - External: aggregation and forwarding in network core
 - Internal: to differentiate between CoCo instances
COCO IS OPEN SOURCE AND BASED ON OPEN SOURCE (DE FACTO) STANDARDS

When designing CoCo, we decided to use as much existing (or emerging) open source technology as possible.

Specifically, we have used:

- OpenDaylight controller (started with Hydrogen, now running Helium)
- RESTconf and OpenFlow as north- and southbound interfaces
- Tomcat and MySQL to host portal application and store information about CoCo instances
- Eclipse J2EE with Maven plugin for portal software development
- OpenStack to control Virtual Machines
- Mininet for some test and prototyping (uses OpenVSwitch)
- Pica8 switches used in physical testbed
COCO PROTOTYPE DEVELOPED

- We developed single-domain CoCo prototype
 - Both physical (Pica8) and virtual (Mininet) test bed was used
 - Validation tests performed: CoCo instance set-up with connectivity test takes less than 10s
- Code available on Github
 - https://github.com/rvdpdotorg/CoCo
- Initial version of prototype demonstrated during SuperComputing’14 exhibition
- TERENA Networking Conference presentation in May’14
- INDIS workshop paper in Nov’14
- Journal paper submitted
CHALLENGES DUE TO RAPID TECHNOLOGY DEVELOPMENT

- With SDN you can easily do whatever you want with your network.
- In course of CoCo project, several challenges were brought to the surface:
 - SDN related technologies evolve very rapidly.
 - New, not necessarily backward-compatible software versions released frequently.
 - Few standards are mature (n.b.: most standards are *de facto* standards).
 - Implementation quality of standards varies.
 - Documentation frequently lagging behind development.
 - Certain bug fixes/feature implementations still require vendor action.
PLANS FOR 2015: MULTIDOMAIN, FEDERATED AUTHENTICATION

- We plan to continue work on CoCo, focusing in `15 on the following aspects:
 - CoCo instance to span across several domains
 - CoCo agent to exchange information about participating sites with its peers in other domains
 - Possible integration with OpenDaylight VPNService project (Ericsson, SURFnet, Dell)
- Extending CoCo portal with security
 - Authentication – preferably federated model, authorization
- Adding more network administrator functionality and working on simulation environment
VISION PAST 2015: BEYOND CONNECTIVITY-ONLY SERVICE

- System actively helping optimizing BigData analysis process
- Not only connectivity aspects considered but also storage and processing
- Processing: possibility to use accelerators like Nvidia TESLA or Intel Xeon Phi
- System has large autonomy in deciding which resources are used and in what way
- Use case in „Sense Making of BigData” TNO programme
VISION PAST 2015: BEYOND CONNECTIVITY-ONLY SERVICE

› Assume Software Defined Network connects several processing+storage sites (nodes or clusters)
› New BigData application (BDapp) to be served
› Application has constrains such as:
 › Data is distributed in certain way
 › Can use accelerators
› Question: how to optimally handle this request considering both BDapp and infrastructure constraints
STRATEGY I: PULL DATA TO SINGLE PROCESSING NODE

- Based on overall network state and processing units state decide:
 - Pull data to single processing node;
 - Large transfers are expected, O(100GB)
 - SDN controller creates virtual network, reserves bandwidth etc.
 - Paths may not be shortest in terms of hops
- Strategy requires combining information from SDN controller and processing nodes
STRATEGY II: PUSH COMPUTATIONS ENGINES TO WHERE DATA IS

- Based on overall network state and processing units state decide:
 - Push computing engine to data location and fetch only results
 - Use Virtual Machines (VMs) images which hold analytics software
 - Maybe even use some lightweight containers like Docker images;
 - Small transfers expected; VMs: O(1GB), Docker: O(10MB)
- Again: combine information from SDN controller and processing nodes
SUMMARY

- SDN offers new possibilities for creating services which either do not yet exist or require significant effort to be brought up.
- Such services may be initiated on-demand by applications/users.
- Network admins will still have a job ;-)
 - More control offloaded to users or system itself requires (even more?) careful planning and implementation.
- SDN + BigData = (happy) marriage.
 - Intelligent network supports running BigData applications.
- Control system running to large extend autonomously, making decisions dynamically, based on infrastructure state and applications requirements.
 - E.g., switch on-flight between data-pull and computing-engine-push strategies.